MTH221, LINEAR ALGEBRA, FINAL EXAM FALL 2006

Question 1. (6 points) Let $A=\left[\begin{array}{ccc}2 & 123 & -1 \\ 1 & 456 & 1 \\ 2 & 789 & 1\end{array}\right]$ If you know that $\operatorname{det}(A)=$ -420 , then find the value of x_{2} in the solution of the linear system $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

Question 2. Determine whether the following vectors are linearly independent in the vector space V (SHOW YOUR WORK).
a)(4 points) $V=R^{3},\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$
b) (4 points) $V=P_{3}, \quad 3 x^{2}, \quad x^{2}-10 x+15, \quad 10 x-15$

Question 3. For each of the following sets of vectors, determine if it is a subspace. If YES explain why and, if your answer is a NO then give an example to show why it is not subspace.
(a) (5 points) $S=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{1}-5 x_{3}=0\right\}$
b)(5 points) $S=\left\{B \in R^{2 \times 2} \mid A\right.$ is singular (non-invertible) $\}$

Question 4. Find a Basis for each of the following subspace S of the given vector space V. (DO NOT SHOW IT IS A SUBSPACE)
a) $(5$ points $) V=R^{5}, S=\left\{\left.\left[\begin{array}{c}a+b \\ b \\ c \\ 0 \\ c+b\end{array}\right] \right\rvert\, a, b, c \in R\right\}$
b) (5 points) $V=R^{2 x 2}, S=\left\{A \in R^{2 \times 2} \mid-A=A^{T}\right\}$
c)(5 points) $V=P_{4}, S=\left\{p \in P_{4} \mid p(1)=p(0)=0\right\}$

Question 5. Let $S=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 2\end{array}\right]\right\}$.
a)(4 points) Find a basis for S.
b)(4 points) Find an ORTHONORMAL BASIS for S.

Question 6. Consider the following set of polynomials in P_{3}.

$$
S=\left\{t^{2}+1, t^{2}+2 t, 3 t^{2}+t-1\right\}
$$

c. (4 points) Find a basis for $\operatorname{Span}\{S\}$.
b. (4 points) Does $6 t^{2}-1$ belong to $\operatorname{Span}\{S\}$?

Question 7. We have $a \times 3$ matrix $A=\left[\begin{array}{lll}a & 1 & 2 \\ b & 3 & 4 \\ c & 5 & 6\end{array}\right]$ with $\operatorname{det}(A)=3$. Compute the determinant of the following matrices:
(a) (2 points) $\left[\begin{array}{lll}a-2 & 1 & 2 \\ b-4 & 3 & 4 \\ c-6 & 5 & 6\end{array}\right]$
(b) (2 points) $\left[\begin{array}{lll}7 a & 7 & 14 \\ b & 3 & 4 \\ c & 5 & 6\end{array}\right]$
(c) $\left(\mathbf{3}\right.$ points) $2 A^{-1} A^{T}$
d) (4 points) $\left[\begin{array}{lll}a-2 & 1 & 2 \\ b & 3 & 4 \\ c & 5 & 6\end{array}\right]$

Question 8.

$$
\text { If } A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right)
$$

a) (4 points) Find all eigenvalues A
b) (6 points)Find a nonsingular matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$ (that it is $A=Q D Q^{-1}$)
c) (5 points) For the matrix A in Question number 8, find A^{5}

Question 9. (6 points) Let $L: R^{3} \longrightarrow R^{3}$ be a linear transformation such that $L\left(\left[\begin{array}{c}-2 \\ 1 \\ -2\end{array}\right]\right)=\left[\begin{array}{c}-3 \\ 1 \\ 2\end{array}\right], \quad L\left(\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]\right)=\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right], \quad L\left(\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right]$.
Find $L\left(\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right)$

Question 10. It is given that $A=\left[\begin{array}{ccccc}1 & 0 & -2 & 1 & 3 \\ -1 & 1 & 5 & -1 & -3 \\ 0 & 2 & 6 & 0 & 1 \\ 1 & 1 & 1 & 1 & 4\end{array}\right]$ and its reduced row echelon form is given by $B=\left[\begin{array}{ccccc}1 & 0 & -2 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) (2 points) Find the rank of A.
(b) (2 points)Find the nullity of A.
(c) (3 points) Find a basis for the column space of A.
(d) (3 points) Find a basis for the row space of A.
(e) (3 points) Find a basis for the null space of A.

Final Review

1. (10 points) Find the general solution of

$$
\begin{aligned}
x+2 y+z & =1 \\
-x-2 y+z & =2 \\
2 x+4 y+2 z & =2
\end{aligned}
$$

2. Find the inverse and the determinant of $A=\left[\begin{array}{ccc}-6 & 2 & -2 \\ 2 & -2 & 0 \\ -2 & 0 & 2\end{array}\right]$
3. Suppose A is a 3×3 invertible matrix and $A^{-1}=\left[\begin{array}{ccc}1 & 2 & 1 \\ 3 & 5 & 2 \\ 1 & 0 & 3\end{array}\right]$.
(a) Solve the system of equations $A X=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
(b) Solve the system of equations $A^{T} X=\left[\begin{array}{c}2008 \\ 1 \\ 0\end{array}\right]$
4. Suppose A and B are 4×4 matrices. If $\operatorname{det}(A)=-2$ and $\operatorname{det}(B)=3$ find
(a) $\operatorname{det}\left(3 A^{-1} \cdot B^{-1}\right)$
(b) $\operatorname{det}\left(A^{2} .4 B^{-1}\right)$
(c) $\operatorname{det}(\operatorname{adj}(A))$
5. Suppose A is a 2×2 invertible matrix. If the row operation $-2 R_{1}+R_{2} \rightarrow$ R_{2} and then the row operation $-R_{2}+R_{1} \rightarrow R_{1}$ is performed on A, it becomes the identity matrix.
(a) Find two elementary matrices E_{1} and E_{2} such that $E_{2} E_{1} A=I_{2 \times 2}$.
(b) Write A as a product of elementary matrices. [Hint: Use (a)]
(c) Write A^{-1} as a product of elementary matrices. [Hint: Use (a)]
6. (10 points) For which values of x (if any) is the matrix $\left(\begin{array}{ccc}1 & 0 & -3 \\ 0 & x & 2 \\ 3 & -10 & x\end{array}\right)$ singular (not invertible)?
7. (12 points) Express

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 4 & 0 \\
3 & 0 & 4
\end{array}\right)
$$

as a product of elementary matrices.
8. Find a basis for the subspace of R^{4} spanned by

$$
\{(2,9,-2,53),(-3,2,3,-2),(8,-3,-8,17),(0,-3,0,15)\}
$$

9. Let $A=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & 2 & 1 \\ 2 & -6 & 4\end{array}\right]$, find
(a) the rank of the matrix
(b) a basis for $\operatorname{Nul}(A)$.
(c) a basis of the row space of A.
(d) a basis for the column space of A.
10. Suppose $A=\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 3 & 5 & 2 & 3 \\ 1 & 0 & 3 & 2\end{array}\right]$ and echelon form of A is $\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1\end{array}\right]$.
(a) Find a basis for the column space of A.
(b) Find the nullity of A.
(c) Find a basis for the row space of A.
11. (12 points) Which of the following are subspaces of the given vector space V ? Justify your answers.
(a) $V=R^{3}, S=\{(x, y, 0): x+y=0\}$.
(b) $V=R^{3}, S=\{(x, y, 0): x y \geq 0\}$.
(c) $V=R^{2 \times 2}, S=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right.$: All matrices in V where $\left.a b c=0\right\}$
12. (10 points) Find a Basis for each of the following subspaces S of the given vector space V.
(a) $V=R^{2 \times 2}, S=\left\{\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)\right.$: All matrices in V where $\left.a+b-c=0\right\}$
(b) $V=P_{2}, S=\left\{p(x)\right.$ is in P_{2} and $\left.p(1)=0\right\}$
13. (12 points)Determine whether the following sets of vectors are linearly independent in the vector space V. Justify your answers.
(a) $V=R^{3}, v_{1}=(1,0,0), v_{2}=(1,1,1), v_{3}=(2,2,3)$.
(b) $V=P_{3}, p_{1}(x)=x^{2}+x-1, p_{2}(x)=1-x^{2}, p_{3}(x)=x$
14. (10 points) Let T be the linear transformation from R^{2} to R^{2} given by $T(a, b)=(a-b, 2 b+a)$.
(a) Find the standard matrix representation of T.
(b) Find $T^{-1}(x, y)$ if T^{-1} exists.
15. (14 points) Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

(a) Find the characteristic Polynomial of A.
(b) Hence find the Eigenvalues of A.
(c) For each Eigenvalue of A, find a basis of the corresponding Eigenspace.
(d) Decide if A is diagonalizable or not. Justify your answer. If yes, give an invertible matrix P and a diagonal matrix D such that $P D P^{-1}=$ A.
16. (10 points) Consider the vectors $u=(a-1,1, b), v=(2, a,-1)$ and $w=(3, a+b, 2)$ in R^{3}. Find all values of a and b that make u orthogonal to both v and w.
17. Let $u_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right], u_{3}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$, and $x=\left[\begin{array}{c}8 \\ -4 \\ -3\end{array}\right]$.
(a) Show that the set $\beta=\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis for R^{3}.
(b) Express x as a linear combination of the elements in β.
18. Suppose $\beta=\left\{\left[\begin{array}{c}3 \\ -1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}-5 \\ 9 \\ -9 \\ 3\end{array}\right]\right\}$ is a basis for a subspace W. Use Gram-Schmidt to construct an orthonormal basis for W.

Final Exam for MTH 221 , Spring 2011

Ayman Badawi

QUESTION 1. (12pts, each $=1.5$ points) Answer the following as true or false: NO WORKING NEED BE SHOWN.
(i) If A is a 3×3 matrix and $\operatorname{det}(A)=4$, then $\operatorname{det}(3 \mathrm{~A})=12$.
(ii) If A is a 10×10 matrix and $\operatorname{det}(\mathrm{A})=2$, then $\operatorname{det}\left(A A^{T}\right)=1$
(iii) If Q, F are independent points in R^{n}, then $Q \cdot F=0$ (Q.F means dot product of Q with F).
(iv) $T(a, b, c)=(2 a b,-c)$ is a linear transformation from R^{3} to R^{2}.
(v) If A is a 3×3 matrix and $\operatorname{det}\left(A-\alpha I_{3}\right)=(1-\alpha)^{2}(3+\alpha)$ and $E_{1}=\operatorname{span}\{(2,4,0)\}$, then it is possible that A is diagnolizable.
(vi) If $T: R^{2} \rightarrow R^{2}$ is a linear transformation and $\operatorname{Ker}(T)=\{(0,0)\}$, then T is onto.
(vii) If A is a 4×5 matrix, then dimension of $N(A)$ is at least one.
(viii) If A is a 3×4 matrix and $\operatorname{Rank}(\mathrm{A})=3$, then the columns of A are dependent.

QUESTION 2. (8pts)For what value(s) of k is the system of equations below inconsistent?

$$
\begin{aligned}
-x+y+z & =k \\
2 x-3 y+z & =2 \\
-y+k z & =6+k
\end{aligned}
$$

QUESTION 3. (i) (5pts)For which value(s) of x is the following matrix singular (non-invertible)?

$$
\left(\begin{array}{ccc}
1 & x & 2 \\
-1 & 1 & 1 \\
-1 & 5 & x+1
\end{array}\right)
$$

(ii) (5pts)Find examples of 2×2 matrices A and B such that

$$
\operatorname{det}(A)=\operatorname{det}(B)=2 \text { and } \operatorname{det}(A+B)=25,
$$

or explain why no such matrices can exist.

QUESTION 4. (12pts) Let

$$
A=\left(\begin{array}{lll}
2 & -1 & 0 \\
1 & -1 & 0 \\
2 & -2 & 3
\end{array}\right)
$$

(i) Find A^{-1}.
(ii) Use your result in (i) above to solve the system

$$
\begin{array}{cl}
2 x-y & =1 \\
x-y & =2 \\
2 x-2 y+3 z & =1
\end{array}
$$

(iii) Solve the system $\left(A^{T}\right)^{-1} X=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
(If you need more space, then use the back of this page)

QUESTION 5. (12pts)

(i) Form a basis, say B , for P_{4} such that B contains the two independent polynomials : $f(x)=1+x+2 x^{2}, k(x)=$ $-2-2 x+x^{2}$.
(ii) Let $S=\operatorname{span}\{(1,1,-1,0),(0,1,1,1),(3,5,-1,2)\}$. Find an orthogonal basis for S.
(iii) Let S be the subspace as in (ii). Is $(2,5,1,3) \in S$? EXPLAIN your answer.

QUESTION 6. (12pts)

(i) Let $S=\{(a, b c+a, c) \mid a, b, c \in R\}$. Is S a subspace of R^{3} ? If yes, then find a basis for S. If No, then tell me why not.
(ii) Let $S=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in R\right.$ and $\left.\quad a+b+c=0\right\}$. Is S a subspace of $R^{2 \times 2}$? If yes, then find a basis for S. If No, then tell me why not.
(iii) Let $S=\left\{f(x) \in P_{4} \mid f(1)=0\right.$ OR $\left.f(-2)=0\right\}$. Is S a subspace of P_{4} ? If yes, then find a basis for S. If No, then tell me why not.
(iv) $S=\left\{\left[\begin{array}{cc}x & -x \\ 1 & y\end{array}\right]: x, y \epsilon R\right\}$. Is S a subspace of $R^{2 \times 2}$. If yes, then find a basis. If No, then tell me why not.

QUESTION 7. (14pts) Let $T: R^{4} \rightarrow R^{3}$ such that $T(a, b, c, d)=(a+2 b,-a-2 b+c-d,-2 a-4 b-c+d)$ be a linear transformation.
(i) (3pts)Find the standard matrix representation of T, say M.
(ii) (4pts)Find a basis for $\operatorname{Ker}(T)$.
(iii) (4pts)Find a basis for the range of T.
(iv) (3pts)Is $(-2,1,3,3) \in \operatorname{Kert}(T)$? Explain

QUESTION 8. (8 pts) Let $T: P_{2} \rightarrow R^{2}$ be a linear transformation such that $T(1+x)=(-6,-2)$, and $T(2-x)=$ $(-3,-1)$
(i) Find $T(5)$ and $T(3 x)$
(ii) Is there a polynomial $f(x)=a+b x$ such that $T(a+b x)=(6,2)$? if yes, then find such $f(x)$

QUESTION 9. (12pts) Given $A=\left[\begin{array}{cccc}1 & 4 & 4 & 4 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$ is a diagonalizable matrix.
(i) Find a diagonal matrix D and an invertible matrix Q such that $A=Q D Q^{-1}$.
(ii) Find A^{2012}.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

